Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 350: 141127, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38184082

RESUMO

The advancement of microbial fuel cell technology is rapidly growing, with extensive research and well-established methodologies for enhancing structural performance. This terminology attracts researchers to compare the MFC devices on a technological basis. The architectural and scientific successes of MFCs are only possible with the knowledge of engineering and technical fields. This involves the structure of MFCs, using substrates and architectural backbones regarding electrode advancement, separators and system parameter measures. Knowing about the MFCs facilitates the systematic knowledge of engineering and scientific principles. The current situation of rapid urbanization and industrial growth is demanding the augmented engineering goods and production which results in unsolicited burden on traditional wastewater treatment plants. Consequently, posing health hazards and disturbing aquatic veracity due to partial and untreated wastewater. Therefore, it's sensible to evaluate the performance of MFCs as an unconventional treatment method over conventional one to treat the wastewater. However, MFCs some benefits like power generation, stumpy carbon emission and wastewater treatment are the main reasons behind the implementation. Nonetheless, few challenges like low power generation, scaling up are still the major areas needs to be focused so as to make MFCs sustainable one. We have focused on few archetypes which majorities have been laboratory scale in operations. To ensure the efficiency MFCs are needed to integrate and compatible with conventional wastewater treatment schemes. This review intended to explore the diversification in architecture of MFCs, exploration of MFCs ingredients and to provide the foreseen platform for the researchers in one source, so as to establish the channel for scaling up the technology. Further, the present review show that the MFC with different polymer membranes and cathode and anode modification presents significant role for potential commercial applications after change the system form prototype to pilot scale.


Assuntos
Fontes de Energia Bioelétrica , Purificação da Água , Eletricidade , Águas Residuárias , Tecnologia , Eletrodos
2.
Curr Pharm Biotechnol ; 24(1): 188-198, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35410597

RESUMO

With the ever-growing importance of green technology, the utilization of inorganic metal oxide nanoparticles and their nanofluids against microorganisms garnered more attention than organic metal oxides in recent years. Therefore, using safer, energy and cost-effective natural raw materials, stabilizing agents, and solvents are the fundamental considerations of the greener process. Due to their unique properties, larger surface area to volume ratio, higher stability and selective toxicity towards microbial pathogens, ZnO, TiO2 and silver nanoparticles are considered environmentally friendly and cost-effective antimicrobial agents. Furthermore, amine-based silica nanoparticles and carbon nanotubes are used for the carbon dioxide and hydrogen sulfide separation. The review mainly focuses on the green synthesis of the various nanoparticles to form nanofluids and their application in environmental remediation. In this light, the current paper briefly summarizes the preparation methods and the prospective environmental remediation applications of various nanofluids in the field of microorganisms controlling mechanisms, wastewater treatment methods and harmful gaseous removal methods.


Assuntos
Recuperação e Remediação Ambiental , Nanopartículas Metálicas , Nanotubos de Carbono , Prata , Estudos Prospectivos , Óxidos
3.
Artigo em Inglês | MEDLINE | ID: mdl-35570555

RESUMO

Since the authors are not responding to the editor's requests to fulfill the editorial requirement, therefore, the article has been withdrawn.Bentham Science apologizes to the readers of the journal for any inconvenience this may have caused.The Bentham Editorial Policy on Article Withdrawal can be found at https://benthamscience.com/editorial-policies-main.php. BENTHAM SCIENCE DISCLAIMER: It is a condition of publication that manuscripts submitted to this journal have not been published and will not be simultaneously submitted or published elsewhere. Furthermore, any data, illustration, structure or table that has been published elsewhere must be reported, and copyright permission for reproduction must be obtained. Plagiarism is strictly forbidden, and by submitting the article for publication the authors agree that the publishers have the legal right to take appropriate action against the authors, if plagiarism or fabricated information is discovered. By submitting a manuscript the authors agree that the copyright of their article is transferred to the publishers if and when the article is accepted for publication.

4.
Food Sci Nutr ; 10(5): 1537-1547, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35592281

RESUMO

In the present work, we studied the formation of sunflower oil nanoemulsion using ultrasound techniques. Later, we investigated the development of active films based on a mixture of whey protein containing sunflower oil base nanoemulsion with different concentrations (10, 25, and 50% of total whey protein). The prepared film was by analyzing using the Fourier transform infrared (FTIR), X-ray diffraction (XRD), and field-emission scanning electron microscope (FE-SEM). The film shows no changes in its integrity and crystallinity compared to the virgin film. The presence of nanoemulsion improves the mechanical properties from 2.75 MPa to 3.52 MPa while it decreases the water vapor permeability from 3.4 × 10-10 to 1.3 × 10-10g/m.s.Pa for concentrations NE (50% of Whey protein). The antioxidant activity for Tween 20 nanoemulsion is 38.7% compared to 36.1% for Tween 80 nanoemulsion. The antimicrobial activity of the film contains sunflower nanoemulsion higher than virgin films. The results showed the potential of blend film of whey protein with nanoemulsion for active films for novel food protection.

5.
Nanomaterials (Basel) ; 11(1)2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-33406661

RESUMO

Nanomaterials have found many applications due to their unique properties such as high surface-to-volume ratio, density, strength, and many more. This review focuses on the recent developments on the synthesis of nanomaterials using process intensification. The review covers the designing of microreactors, design principles, and fundamental mechanisms involved in process intensification using microreactors for synthesizing nanomaterials. The microfluidics technology operates in continuous mode as well as the segmented flow of gas-liquid combinations. Various examples from the literature are discussed in detail highlighting the advantages and disadvantages of microfluidics technology for nanomaterial synthesis.

6.
Curr Pharm Biotechnol ; 22(13): 1748-1758, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33148154

RESUMO

BACKGROUND: Colloidal systems are used in various industrial and medical applications. Nanoparticles have good physio-chemical properties that enhance the performance of the system. Nano-emulsions can be synthesized by ultrasonication. Ultrasonication is the simplest method as compared to other available methods. The purpose of this article is to review the recent advances in ultrasound- assisted nano-emulsion synthesis and challenges regarding the safety of the nano-emulsion. METHODS: Application of the nano-emulsions in the various industrial and medical processes like drug delivery process, food industry, pesticide industry and cosmetics industry is also reviewed. RESULTS: Ultrasound-assisted synthesis of nano-emulsions is a simple method as compared to other synthesis methods of the nano-emulsions. Nano-emulsions have potential applications in the cosmetic, drug delivery, pesticides and industry. CONCLUSION: Fabrication of the nano-emulsions is different for each application and product. Physiochemical properties should be strictly monitored in the nano-emulsions as they influence the efficiency of the nano-emulsions greatly. Ostwald ripening is the main phenomenon for the nano-emulsions mechanism.


Assuntos
Nanopartículas , Emulsões
7.
Ultrason Sonochem ; 29: 288-98, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26585009

RESUMO

Present work deals with the ultrasound-assisted biodiesel production from low cost, substantial acid value kusum (Schleichera triguga) oil using a two-step method of esterification in presence of acid (H2SO4) catalyst followed by transesterification using a basic heterogeneous barium hydroxide (Ba(OH)2) catalyst. The initial acid value of kusum oil was reduced from 21.65 to 0.84 mg of KOH/g of oil, by acid catalyzed esterification with 4:1 methanol to oil molar ratio, catalyst concentration 1% (v/v), ultrasonic irradiation time 20 min at 40 °C. Then, Ba(OH)2 concentration of 3% (w/w), methanol to oil molar ratio of 9:1, ultrasonic irradiation time of 80 min, and temperature of 50 °C was found to be the optimum conditions for transesterification step and triglyceride conversion of 96.8% (wt) was achieved. This paper also examined the kinetics as well as the evaluation of thermodynamic parameters for both esterification and transesterification reactions. The lower value of activation energy and higher values of kinetic constants indicated a fast rate of reaction, which could be attributed to the physical effect of emulsification, in which the microturbulence generated due to radial motion of bubbles, creates an intimate mixing of the immiscible reactants causing the increase in the interfacial area, giving faster reaction kinetics. The positive values of Gibbs-free energy (ΔG), enthalpy (ΔH) and negative value of entropy (ΔS) revealed that both the esterification and transesterification were non-spontaneous, endothermic and endergonic reactions. Therefore, the present work has not only established the escalation obtained due to ultrasonication but also exemplified the two-step approach for synthesis of biodiesel from non-edible kusum oil based on the use of heterogeneous catalyst for the transesterification step.


Assuntos
Biocombustíveis , Magnoliopsida/química , Óleos de Plantas/química , Ondas Ultrassônicas , Catálise , Técnicas de Química Sintética , Entropia , Cinética , Metanol/química , Modelos Químicos , Temperatura
8.
J Oleo Sci ; 64(9): 987-97, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26329771

RESUMO

In the present study, the low-cost non-edible kusum (Schleichera triguga) oil with a substantial amount of free fatty acid (FFA) was utilized for biodiesel synthesis. In pretreatment step, FFA was reduced by the acid catalyzed esterification method. Then, response surface method (RSM) in conjunction with centre composite design (CCD) containing 30 experimental runs were statistically employed for process optimization and kinetic study for the base catalyzed transesterification process. A statistical model predicted highest fatty acid methyl ester (FAME) yield of 97.37% at the optimal values of process parameters as follows: sodium methoxide concentration 0.9 wt% of oil, Methanol to oil molar ratio 9:1, temperature 58.9 ℃ and reaction time 58.5 min. Using these optimal parameters under experimental conditions in three independent replicates an actual FAME content of 98.14% was obtained which was in reasonable agreement with predicted one. The developed kinetic model suggested a 1.8(th) order reaction with activation energy of 31.42 kcal mol(-1) and frequency factor of 5.53×10(19) L mol(-1)min(-1). Furthermore, Important fuel properties of kusum oil biodiesel (KOB) was compared with ASTM 6751 and DIN EN 14214. The viscosity was found to be 5.34 Cst at 40 °C and the flash point was 152°C.


Assuntos
Biocombustíveis , Ácidos Graxos não Esterificados/química , Óleos de Plantas , Sapindaceae , Catálise , Esterificação , Ésteres , Metanol , Modelos Estatísticos , Óleos de Plantas/química , Temperatura , Viscosidade
9.
Ultrason Sonochem ; 26: 218-228, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25630700

RESUMO

The present study estimates the prediction capability of response surface methodology (RSM) and artificial neural network (ANN) models for biodiesel synthesis from sesame (Sesamum indicum L.) oil under ultrasonication (20 kHz and 1.2 kW) using barium hydroxide as a basic heterogeneous catalyst. RSM based on a five level, four factor central composite design, was employed to obtain the best possible combination of catalyst concentration, methanol to oil molar ratio, temperature and reaction time for maximum FAME content. Experimental data were evaluated by applying RSM integrating with desirability function approach. The importance of each independent variable on the response was investigated by using sensitivity analysis. The optimum conditions were found to be catalyst concentration (1.79 wt%), methanol to oil molar ratio (6.69:1), temperature (31.92°C), and reaction time (40.30 min). For these conditions, experimental FAME content of 98.6% was obtained, which was in reasonable agreement with predicted one. The sensitivity analysis confirmed that catalyst concentration was the main factors affecting the FAME content with the relative importance of 36.93%. The lower values of correlation coefficient (R(2)=0.781), root mean square error (RMSE=4.81), standard error of prediction (SEP=6.03) and relative percent deviation (RPD=4.92) for ANN compared to those R(2) (0.596), RMSE (6.79), SEP (8.54) and RPD (6.48) for RSM proved better prediction capability of ANN in predicting the FAME content.


Assuntos
Compostos de Bário/química , Biocombustíveis , Biotecnologia/métodos , Redes Neurais de Computação , Óleos de Plantas/química , Sesamum/química , Ondas Ultrassônicas , Catálise , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...